首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   114篇
  国内免费   136篇
测绘学   53篇
大气科学   102篇
地球物理   201篇
地质学   395篇
海洋学   102篇
天文学   23篇
综合类   35篇
自然地理   145篇
  2023年   5篇
  2022年   13篇
  2021年   13篇
  2020年   21篇
  2019年   13篇
  2018年   13篇
  2017年   32篇
  2016年   28篇
  2015年   29篇
  2014年   45篇
  2013年   39篇
  2012年   38篇
  2011年   70篇
  2010年   30篇
  2009年   54篇
  2008年   81篇
  2007年   49篇
  2006年   63篇
  2005年   56篇
  2004年   31篇
  2003年   35篇
  2002年   44篇
  2001年   30篇
  2000年   23篇
  1999年   22篇
  1998年   24篇
  1997年   29篇
  1996年   14篇
  1995年   15篇
  1994年   17篇
  1993年   19篇
  1992年   17篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
排序方式: 共有1056条查询结果,搜索用时 218 毫秒
91.
通过在宁夏鸳鸯湖电厂建立气温、风向、风速60 m梯度及地面观测站,与邻近的灵武市气象站展开为期一年的同步观测,获得实地观测资料。利用两地同步气象观测资料进行对比分析,揭示出电厂所在地气候特点。同时结合灵武市气象站1971~2000年观测资料,采用相关性分析方法,订正得到电厂地面历年气象要素特征值。结果表明,电厂风向和风速特征明显有别于邻近的灵武市气象站。分析结果主要用于该地火电厂空冷系统的安装与安全运行。  相似文献   
92.
Panseok Yang  David Pattison 《Lithos》2006,88(1-4):233-253
The paragenesis of monazite in metapelitic rocks from the contact aureole of the Harney Peak Granite, Black Hills, South Dakota, was investigated using zoning patterns of monazite and garnet, electron microprobe dating of monazite, bulk-rock compositions, and major phase mineral equilibria. The area is characterized by low-pressure and high-temperature metamorphism with metamorphic zones ranging from garnet to sillimanite zones. Garnet porphyroblasts containing euhedral Y annuli are observed from the garnet to sillimanite zones. Although major phase mineral equilibria predict resorption of garnet at the staurolite isograd and regrowth at the andalusite isograd, textural and mass balance analyses suggest that the formation of the Y annuli is not related to the resorption-and-regrowth of garnet having formed instead during garnet growth in the garnet zone. Monazite grains in Black Hills pelites were divided into two generations on the basis of zoning patterns of Y and U: monazite 1 with low-Y and -U and monazite 2 with high-Y and -U. Monazite 1 occurs in the garnet zone and persists into the sillimanite zone as cores shielded by monazite 2 which starts to form in the andalusite zone. Pelites containing garnet porphyroblasts with Y annuli and monazite 1 with patchy Th zoning are more calcic than those with garnet with no Y annuli and monazite with concentric Th zoning. Monazite 1 is attributed to breakdown of allanite in the garnet zone, additionally giving rise to the Y annuli observed in garnet. Monazite 2 grows in the andalusite zone, probably at the expense of garnet and monazite 1 in the andalusite and sillimanite zones. The ages of the two different generations of monazite are within the precision of chemical dating of electron microprobe. The electron microprobe ages of all monazites from the Black Hills show a single ca. 1713 Ma population, close to the intrusion age of the Harney Peak Granite (1715 Ma). This study demonstrates that Y zoning in garnet and monazite are critical to the interpretation of monazite petrogenesis and therefore monazite ages.  相似文献   
93.
Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies analyses reflect prominent variations in sedimentation processes in the Aral Sea. A high-resolution record of titanium from a core retrieved in the northwestern Large Aral Sea allows a continuous reconstruction of wind strength and frequency in western Central Asia for the past 1500 yr. During AD 450–700, AD 1210–1265, AD 1350–1750 and AD 1800–1975, detrital inputs (bearing titanium) are high, documenting an enhanced early spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure system over Central Asia. In contrast, lower titanium content during AD 1750–1800 and AD 1980–1985 reflects a diminished influence of the Siberian High during early spring with a reduced atmospheric circulation. A moderate circulation characterizes the time period AD 700–1150. Unprecedented weakened atmospheric circulation over western Central Asia are inferred during ca. AD 1180–1210 and AD 1265–1310 with a considerable decrease in dust storm frequency, sedimentation rates, lamination thickness and detrital inputs (screened at 40-μm resolution). Our results are concurrent with changes in the intensity of the Siberian High during the past 1400 yr as reported in the GISP2 Ice Core from Greenland.  相似文献   
94.
The objective of this study was to investigate the correlation of visibility with chemical composition of Kaohsiung aerosols. Daytime visibility was observed around noon at two observation sites in metropolitan Kaohsiung, Taiwan in the years of 1999 and 2000. Both seasonal and diurnal variation patterns of visibility were observed in the region. Ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ionic species (Cl, NO3, SO4−2, NH4+, K+, Na+, Ca+2, and Mg+2) and carbonaceous contents (OC, EC, and TC), to characterize the chemical composition of Kaohsiung aerosols. Furthermore, a stepwise multiple linear regression model was developed to elucidate the influence of aerosol species on visibility impairments. The results showed that sulfate was the dominant species that affected both light scattering coefficient and visibility. On average, the percentage contributions of visibility degrading species to light scattering coefficient were 29% for sulfate, 28% for nitrate, 22% for total carbon, and 21% for PM2.5-remainder. An empirical regression model of visibility based on sulfate, nitrate, and relative humidity was also developed. The model showed that sulfate in PM2.5 was the most sensitive species to visibility variation, suggesting that the reduction of sulfate in PM2.5 could effectively improve the visibility of metropolitan Kaohsiung. During the investigation period, an event of Asian dusts intruded metropolitan Kaohsiung and dramatically increased the aerosol loadings, especially in the coarse particles. However, local visual air quality did not degrade accordingly during the Asian dust event because both visibility and light scattering coefficient are affected mainly by the fine particles. The results are discussed in detail in the paper.  相似文献   
95.
Christophe Pascal   《Tectonophysics》2006,425(1-4):83-99
Gravitational potential stresses (GPSt) are known to play a first-order role in the state of stress of the Earth's lithosphere. Previous studies focussed mainly on crust elevation and structure and little attention has been paid to modelling GPSt using realistic lithospheric structures. The aim of the present contribution is to quantify gravitational potential energies and stresses associated with stable lithospheric domains. In order to model realistic lithosphere structures, a wide variety of data are considered: surface heat flow, chemical depletion of mantle lithosphere, crustal thickness and elevation. A numerical method is presented which involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution, but additionally requires the studied lithosphere to be isostatically compensated at its base. The impact of varying surface and crustal heat flow, topography, Moho depth and crust density on the signs and magnitudes of predicted GPSt is systematically explored. In clear contrast with what is assumed in most previous studies, modelling results show that the density structure of the mantle lithosphere has a significant impact on the value of the predicted GPSt, in particular in the case of thick lithospheres. Using independent information from the literature, the method was applied to get insights in the state of stress of continental domains with contrasting tectono-thermal ages. The modelling results suggest that in the absence of tectonic stresses Phanerozoic and Proterozoic lithospheres are spontaneously submitted to compression whereas Archean lithospheres are in a neutral to slightly tensile stress state. These findings are in general in good agreement with global stress measurements and observed geoid undulations.  相似文献   
96.
Understanding the evolution of geochemical and geomorphic systems requires measurements of long-term rates of physical erosion and chemical weathering. Erosion and weathering rates have traditionally been estimated from measurements of sediment and solute fluxes in streams. However, modern sediment and solute fluxes are often decoupled from long-term rates of erosion and weathering, due to storage or re-mobilization of sediment and solutes upstream from the sampling point. Recently, cosmogenic nuclides such as 10Be and 26Al have become important new tools for measuring long-term rates of physical erosion and chemical weathering. Cosmogenic nuclides can be used to infer the total denudation flux (the sum of the rates of physical erosion and chemical weathering) in actively eroding terrain. Here we review recent work showing how this total denudation flux can be partitioned into its physical and chemical components, using the enrichment of insoluble tracers (such as Zr) in regolith relative to parent rock. By combining cosmogenic nuclide measurements with the bulk elemental composition of rock and soil, geochemists can measure rates of physical erosion and chemical weathering over 1000- to 10,000-year time scales.  相似文献   
97.
Airborne gamma-ray spectrometry data (uranium, potassium and thorium contents) reveal geochemical heterogeneities within the monolithological Hyrôme watershed (ca. 150 km2) in the Armorican massif (western France). Our observations and computations provide important constraints on the spatial distribution and the associated magnitudes of chemical erosion processes at the scale of a small watershed. Two distinct, partially preserved, weathering profiles exhibit a strong correlation between regolith evolution and airborne-derived K/Th ratios, suggesting that the variability is linked to supergene processes. Using both airborne data and laboratory measurements on rock samples, the total net export of potassium has been estimated at 422 ± 50 kg/m2 and the chemical weathering rate of potassium at 17 ± 2 kg/km2/a.  相似文献   
98.
Over time periods of 106 years and longer, atmospheric carbon dioxide content is largely controlled by a balance between silicate rock weathering and CO2 sources (degassing from the Earth plus net organic carbon oxidation). Vegetation cover can affect silicate rock weathering rates by increasing soil CO2 content, stabilizing soil cover, and producing organic acids. Forests absorb more solar radiation than most other ecosystems; this tends to warm Earth's climate, especially outside of the tropics; this warmth would tend to increase silicate rock weathering rates. Here, we develop preliminary parameterizations of this effect that could be incorporated into carbonate–silicate cycle models, based on the results of general circulation model simulations.  相似文献   
99.
Eighty-seven groundwater samples have been collected from a mountainous region (Alvand, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Most water quality parameters are within World Health Organization acceptable limits set for drinking water. The least mineralized water is found closest to the main recharge zones and the salinity of water increased towards the north of the basin. The most prevalent water type is Ca–HCO3 followed by water types Ca–NO3, Ca–Cl, Ca–SO4 and Mg–HCO3. The Ca–NO3 water type is associated with high nitrate pollution. Agricultural and industrial activities were associated with elevated level of NO3. Mineral dissolution/weathering of evaporites dominates the major element hydrochemistry of the area. Chemical properties of groundwater in Alvand region are controlled both by natural geochemical processes and anthropogenic activities.  相似文献   
100.
Chemical weathering indices are useful tools in characterizing weathering profiles and determining the extent of weathering. However, the predictive performance of the conventional indices is critically dependent on the composition of the unweathered parent rock. To overcome this limitation, the present paper introduces an alternative statistical empirical index of chemical weathering that is extracted by the principal component analysis (PCA) of a large dataset derived from unweathered igneous rocks and their weathering profiles. The PCA analysis yields two principal components (PC1 and PC2), which capture 39.23% and 35.17% of total variability, respectively. The extent of weathering is reflected by variation along PC1, primarily due to the loss of Na2O and CaO during weathering. In contrast, PC2 is the direction along which the projections of unweathered felsic, intermediate and mafic igneous rocks appear to be best discriminated; therefore, PC1 and PC2 represent independent latent variables that correspond to the extent of weathering and the chemistry of the unweathered parent rock. Subsequently, PC1 and PC2 were then mapped onto a ternary diagram (MFW diagram). The M and F vertices characterize mafic and felsic rock source, respectively, while the W vertex identifies the degree of weathering of these sources, independent of the chemistry of the unweathered parent rock.

The W index has a number of significant properties that are not found in conventional weathering indices. First, the W index is sensitive to chemical changes that occur during weathering because it is based on eight major oxides, whereas most conventional indices are defined by between two and four oxides. Second, the W index provides robust results even for highly weathered sesquioxide-rich samples. Third, the W index is applicable to a wide range of felsic, intermediate and mafic igneous rock types. Finally, the MFW diagram is expected to facilitate provenance analysis of sedimentary rocks by identifying their weathering trends and thereby enabling a backward estimate of the composition of the unweathered source rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号